Experimental validation of an inverse fluorescence Monte Carlo model to extract concentrations of metabolically relevant fluorophores from turbid phantoms and a murine tumor model.
نویسندگان
چکیده
An inverse Monte Carlo based model has been developed to extract intrinsic fluorescence from turbid media. The goal of this work was to experimentally validate the model to extract intrinsic fluorescence of three biologically meaningful fluorophores related to metabolism from turbid media containing absorbers and scatterers. Experimental studies were first carried out on tissue-mimicking phantoms that contained individual fluorophores and their combinations, across multiple absorption, scattering, and fluorophore concentrations. The model was then tested in a murine tumor model to determine both the kinetics of fluorophore uptake as well as overall tissue fluorophore concentration through extraction of the intrinsic fluorescence of an exogenous contrast agent that reports on glucose uptake. Results show the model can be used to recover the true intrinsic fluorescence spectrum with high accuracy (R(2)=0.988) as well as accurately compute fluorophore concentration in both single and multiple fluorophores phantoms when appropriate calibration standards are available. In the murine tumor, the model-corrected intrinsic fluorescence could be used to differentiate drug dose injections between different groups. A strong linear correlation was observed between the extracted intrinsic fluorescence intensity and injected drug dose, compared with the distorted turbid tissue fluorescence.
منابع مشابه
Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum.
The goal of the work is to experimentally verify Monte Carlo modeling of fluorescence and diffuse reflectance measurements in turbid, tissue phantom models. In particular, two series of simulations and experiments, in which one optical parameter (absorption or scattering coefficient) is varied while the other is fixed, are carried out to assess the effect of the absorption coefficient (mu(a)) a...
متن کاملPhantom validation of Monte Carlo modeling for noncontact depth sensitive fluorescence measurements in an epithelial tissue model.
Experimental investigation and optimization of various optical parameters in the design of depth sensitive optical measurements in layered tissues would require a huge amount of time and resources. A computational method to model light transport in layered tissues using Monte Carlo simulations has been developed for decades to reduce the cost incurred during this process. In this work, we emplo...
متن کاملMonte Carlo based method for fluorescence tomographic imaging with lifetime multiplexing using time gates
Time-resolved fluorescence optical tomography allows 3-dimensional localization of multiple fluorophores based on lifetime contrast while providing a unique data set for improved resolution. However, to employ the full fluorescence time measurements, a light propagation model that accurately simulates weakly diffused and multiple scattered photons is required. In this article, we derive a compu...
متن کاملDrug quantification in turbid media by fluorescence imaging combined with light-absorption correction using white Monte Carlo simulations.
Accurate quantification of photosensitizers is in many cases a critical issue in photodynamic therapy. As a noninvasive and sensitive tool, fluorescence imaging has attracted particular interest for quantification in pre-clinical research. However, due to the absorption of excitation and emission light by turbid media, such as biological tissue, the detected fluorescence signal does not have a ...
متن کاملUnderstanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and implications.
OBJECTIVE At 380 nm excitation, cervical tissue fluorescence spectra demonstrate characteristic changes with both patient age and the presence of dysplasia. A Monte Carlo model was developed in order to quantitatively examine how intrinsic NADH and collagen fluorescence, in combination with tissue scattering and absorption properties, yield measured tissue spectra. METHODS Excitation-emission...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomedical optics
دوره 17 7 شماره
صفحات -
تاریخ انتشار 2012